Numerical simulations of stratified inviscid flow over a smooth obstacle

Author:

Lamb Kevin G.

Abstract

Results of numerical simulations of the flow of a non-rotating, inviscid, Boussinesq fluid over smooth two-dimensional obstacles are described. The fluid has finite depth and a rigid lid. Far upstream of the obstacle the horizontal velocity and buoyancy frequency are uniform. Comparisons with linear theory for small-amplitude obstacles are made and the long-time behaviour is compared with steady-state Long's model solutions. Comparisons with the time-dependent results of Baines (1979) are done. For Froude numbers between ½ and 1 the obstacle amplitude is varied in order to determine the amplitudes needed to initiate wave breaking. These results are compared with the predictions of Long's model and with the experimental results of Baines (1977) showing good agreement with the latter. It is found that wave breaking occurs for amplitudes significantly lower than Long's model predicts for a large range of Froude numbers. This is shown to be the result of the generation of large-amplitude lee waves with wavelengths longer than that of stationary lee waves, but not long enough to propagate upstream. The behaviour of these waves is coupled to the generation of both longer mode-one waves which do propagate upstream from the obstacle and to mode-two waves which propagate against the flow as they are advected downstream. It is also coupled to oscillations in the wave drag. The periods of the wave drag oscillations are compared to experimental results showing good agreement with cases for which oscillations have been observed. The behaviour of these large transient lee waves is compared with the theoretical results contained in Grimshaw & Yi (1991), showing some similarities. As the Froude number approaches 0.5 the breaking behaviour is no longer due to these large waves, with the result that wave breaking occurs much later.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Grimshaw, R. & Yi, Z. 1991 Resonant generation of finite-amplitude waves by the flow of a uniformly stratified fluid over topography.J. Fluid Mech. 229,603–628 (referred to herein as GY).

2. Boyer, D. L. & Tao, L. 1987 Impulsively started, linearly stratified flow over long ridges.J. Atmos. Sci. 44,23–42.

3. Baines, P. G. 1979 Observations of stratified flow over two-dimensional obstacles in fluid of finite depth.Tellus 31,351–371.

4. Hanazaki, H. 1989 Upstream advancing columnar disturbances in two-dimensional stratified flow of finite depth.Phys. Fluids A1,1976–1987.

5. Long, R. R. 1953 Some aspects of the flow of stratified fluids. I. A theoretical investigation.Tellus 5,42–58.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3