Evolution of two-layer thermohaline systems under surface cooling

Author:

VOROPAYEV S. I.,FERNANDO H. J. S.

Abstract

This paper presents the results of a series of laboratory experiments aimed at understanding the processes associated with surface freezing of a two-layer fluid. The flow configuration consists of a layer of cold, salty water overlying a relatively deep bottom layer of warm, saltier water. This situation is common in high-latitude oceans during periods of rapid ice formation. The experiments were conducted in a tank with well-insulated side and bottom walls, placed in a walk-in freezer with air temperatures from −12 to −20°C. A system of thermocouples was used to measure the temperatures at fixed levels in water, ice and air. Microscale conductivity and temperature probes were used to obtain vertical profiles of temperature and salinity in the water. In general, when external uxes of heat and salt are absent, such a system enhances static stability, in the sense that the net density difference between the layers increases with time. When external uxes of heat (because of surface cooling) and salt (rejected during ice formation) are applied, however, this fluid system may become unstable and overturning of fluid layers is possible. In addition, heat transport from the warmer bottom layer to the colder upper layer may be important, possibly leading to a reduction in the rate of ice formation compared to that of a homogeneous fluid with temperature and salinity identical to the upper layer. Descriptions of such physical processes are given using laboratory experiments, and quantitative measurements of salient parameters are compared with the predictions of a theoretical model developed to explicate the flow evolution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frazil deposition under growing sea ice;Journal of Geophysical Research;2009-07-14

2. A criterion for the generation of turbulent anabatic flows;Physics of Fluids;2007-10

3. Turbulent thermal convection in a rotating stratified fluid;Journal of Fluid Mechanics;2002-09-24

4. Solidification of leads: Theory, experiment, and field observations;Journal of Geophysical Research: Oceans;2000-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3