Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity

Author:

STOKES JASON R.,GRAHAM LACHLAN J. W.,LAWSON NICK J.,BOGER DAVID V.

Abstract

A torsionally driven cavity, consisting of a fully enclosed cylinder with rotating bottom lid, is used to examine the confined swirling flow of low-viscosity Boger fluids for situations where inertia dominates the flow field. Flow visualization and the optical technique of particle image velocimetry (PIV) are used to examine the effect of small amounts of fluid elasticity on the phenomenon of vortex breakdown. Low-viscosity Boger fluids are used which consist of dilute concentrations of high molecular weight polyacrylamide or semi-dilute concentrations of xanthan gum in a Newtonian solvent. The introduction of elasticity results in a 20% and 40% increase in the minimum critical aspect ratio required for vortex breakdown to occur using polyacrylamide and xanthan gum, respectively, at concentrations of 45 p.p.m. When the concentrations of either polyacrylamide or xanthan gum are raised to 75 p.p.m., vortex breakdown is entirely suppressed for the cylinder aspect ratios examined. Radial and axial velocity measurements along the axial centreline show that the alteration in existence domain is linked to a decrease in the magnitude of the peak in axial velocity along the central axis. The minimum peak axial velocities along the central axis for the 75 p.p.m. polyacrylamide and 75 p.p.m. xanthan gum Boger fluids are 67% and 86% lower in magnitude, respectively, than for the Newtonian fluid at Reynolds number of Re ≈ 1500–1600. This decrease in axial velocity is associated with the interaction of elasticity in the governing boundary on the rotating base lid and/or the interaction of extensional viscosity in areas with high velocity gradients. The low-viscosity Boger fluids used in this study are rheologically characterized and the steady complex flow field has well-defined boundary conditions. Therefore, the results will allow validation of non-Newtonian constitutive models in a numerical model of a torsionally driven cavity flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3