The viscous interaction between sound waves and the trailing edge of a supersonic splitter plate

Author:

Peake N.

Abstract

We consider the flow resulting from the interaction between the trailing edge of a supersonic splitter plate and sound waves incident on the trailing edge from upstream, as a model problem of relevance to understanding the unsteady flow in the vicinity of a supersonic jet nozzle. Morgan has previously shown that there is only one plausible solution to the outer potential-flow problem in this supersonic system, in which the vortex-sheet deflection close to the trailing edge varies linearly with the distance from the trailing edge, and that, in contrast to the subsonic version of the problem, it is not possible to construct an outer solution in which the vortex sheet leaves the plate smoothly (i.e. with zero gradient). In this paper our aim is to establish that this supersonic potential-theory solution is consistent with the equations governing the viscous flow close to the plate, and to provide a description of the nature of this inner flow, and we proceed by applying asymptotic analysis in the limit of large Reynolds number. For appropriate choices of the incident-wave amplitude and frequency, the canonical triple-deck structure at the trailing edge is realized, and the governing equations are then simplified by linearizing about the steady base flow in the lower deck; upstream of the trailing edge the unsteady flow is calculated analytically, whilst downstream a two-region parabolic scheme is employed. Our inner viscous flow is seen to match onto the outer potential-theory solution, and in particular we verify that the downstream evolution of the lower-deck flow as it emerges into the outer region corresponds exactly to the behaviour of the vortex sheet at the trailing edge in the outer flow. Once the consistency of the outer solution has been established, the dependence on the various flow parameters can be investigated, and we demonstrate in particular that significant unsteady shear-layer disturbances can be generated at the trailing edge over a wide range of values of the incidence angle, and that the amplitude of these disturbances decreases with increasing supersonic flow speed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Rienstra, S. W. 1981 Sound diffraction at a trailing edge.J. Fluid Mech. 108,443–460.

2. Stewartson, K. & Williams, P. G. 1969 Self-induced separation.Proc. R. Soc. Lond. A312,181–206.

3. Stewartson, K. 1969 On the flow near the trailing edge of a flat plate II.Mathematika 16,106–121.

4. Crighton, D. G. 1972b Radiation properties of the semi-infinite vortex sheet.In Papers on Novel Aerodynamic Noise Source Mechanisms at Low Speeds .Ministry of Defence (Procurement Executive) CP 1195.

5. Jones, D. S. 1972 Aerodynamic sound due to a source near a half-plane.J. Inst. Maths Applics 9,114–122.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3