Author:
Martin C. Samuel,Padmanabhan M.,Ponce-Campos C. D.
Abstract
The rolling motion of a sphere on a smooth plane boundary in a simple-harmonic water motion has been analytically and experimentally investigated. For spheres having specific gravities ranging from 0·09 to 15·18 the sphere motion was found to be sinusoidal for both low and high values of the period parameter defined by Keulegan & Carpenter. The knowledge of the sphere motion, and hence the resultant force, allowed the determination of inertia and drag coefficients from Fourier-averaging techniques. Experiments in the inertial range yielded an added-mass coefficient of 1·2, compared with 0·67 from inviscid theory for translating spheres. For values of the period parameter greater than 30 the drag coefficient is reported to be approximately 0·74.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference36 articles.
1. Grace, R. A. & Casciano, F. M. 1969 Ocean wave forces on a subsurface sphere.J. Waterways Harbors Div., Proc. A.S.C.E. 95 (WW3),291–317.
2. Faxén, H. 1921 Einwirkung der Gefasswände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit. Dissertation, Uppsala.
3. O'Brien, M. P. & Morison, J. R. 1952 The forces exerted by waves on objects.Trans. Am. Geophys. Un 33,32–38.
4. Waugh, J. G. & Ellis, A. T. 1969 Fluid-free-surface proximity effect on a sphere vertically accelerated from rest.J. Hydronautics 3 (4),175–179.
5. O'Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere.Mathematika,11,67–74.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献