Viscous–inviscid interactions in transonic flows through slender nozzles

Author:

KLUWICK A.,MEYER G.

Abstract

Considering the miniaturization trend in technical applications, the need of a slender nozzle theory for such conventional, that is ideal-gas-like, fluids, which accounts for a strong boundary-layer interaction with the core region, arises in quite a natural way as the dimensions of the flow device are successively reduced. Moreover, a number of modern technological processes (e.g. organic Rankine cycles) involve fluids with high molecular complexity, some of which are expected to exhibit embedded regions with negative values of the fundamental derivative in the vapour phase commonly termed Bethe–Zel'dovich–Thompson (BZT) fluids. Linked to it, unconventional Laval nozzle geometries are needed to transform subsonic to supersonic internal flows. In the present paper, the transonic flows through nozzles of short length scales located in a channel of constant cross-section so slender that the flow in the inviscid core region is one-dimensional are considered. Rapid streamwise changes of the flow field caused by the nozzle then lead to a local breakdown of the classical hierarchical boundary-layer approach, which is overcome by the triple-deck concept. Consequently, the properties of the inviscid core and the near-wall (laminar) boundary-layer regions have to be calculated simultaneously. The resulting problem is formulated for both regular (ideal-gas-like) fluids and dense gases. Differences and similarities of the resulting flow pattern with respect to the well-known classical Laval nozzle flow are presented for perfect gases, and the regularizing influence of viscous–inviscid interactions, is examined. Furthermore, the analogous problem is considered for BZT fluids in detail as well. The results indicate that the passage through the sonic point in the inviscid core is strongly affected by the combined influence of nozzle geometry and boundary-layer displacement effects suggesting in turn an inverse Laval nozzle design in order to obtain the desired flow behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3