A multimodal method for liquid sloshing in a two-dimensional circular tank

Author:

FALTINSEN ODD M.,TIMOKHA ALEXANDER N.

Abstract

Two-dimensional forced liquid sloshing in a circular tank is studied by the multimodal method which uses an expansion in terms of the natural modes of free oscillations in the unforced tank. Incompressible inviscid liquid, irrotational flow and linear free-surface conditions are assumed. Accurate natural sloshing modes are constructed in an analytical form. Based on these modes, the ‘multimodal’ velocity potential of both steady-state and transient forced liquid motions exactly satisfies the body-boundary condition, captures the corner-point behaviour between the mean free surface and the tank wall and accurately approximates the free-surface conditions. The constructed multimodal solution provides an accurate description of the linear forced liquid sloshing. Surface wave elevations and hydrodynamic loads are compared with known experimental and nonlinear computational fluid dynamics results. The linear multimodal sloshing solution demonstrates good agreement in transient conditions of small duration, but fails in steady-state nearly-resonant conditions. Importance of the free-surface nonlinearity with increasing tank filling is explained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3