Flow past an impulsively started circular cylinder

Author:

Collins W. M.,Dennis S. C. R.

Abstract

An accurate method is described for integrating the Navier-Stokes equations numerically for the time-dependent flow past an impulsively started circular cylinder. Results of integrations over the range of Reynolds numbers, based on the diameter of the cylinder, from 5 to ∞ are presented and compared with previous numerical, theoretical and experimental results. In particular, the growth of the length of the separated wake behind the cylinder has been calculated forR= 40, 100 and 200 and is found to be in very good agreement with the results of recent experimental measurements. The calculated pressure distribution over the surface of the cylinder forR= 500 is also found to be in reasonable agreement with experimental measurements for the caseR= 560.For Reynolds numbers up to 100 the equations were integrated until most of the features of the flow showed a close approximation to steady-state conditions. The results obtained are in good agreement with previous calculations of the steady flow past a circular cylinder. ForR> 100 the integrations were continued until the implicit method of integration broke down by reason of its failure to converge. A secondary vortex appeared on the surface of the cylinder in the caseR= 500, but for higher Reynolds numbers, including the caseR= ∞, the procedure broke down before the appearance of a secondary vortex. In all cases the flow was assumed to remain symmetrical.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Honji, H. & Taneda, S. 1969 J. Phys. Soc. Japan,27,1668.

2. Wang, C. Y. 1967 J. Math. Phys. 46,195.

3. Proudman, I. & Johnson, K. 1962 J. Fluid Mech. 12,161.

4. Dennis, S. C. R. & Staniforth, A. N. 1971 Lecture Notes in Physics 8,343.

5. Schwabe, M. 1935 Ing.-Arch. 6,34.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3