Turbulent channel flow with large-amplitude velocity oscillations

Author:

Tardu Sedat F.,Binder Gilbert,Blackwelder Ron F.

Abstract

Measurements in turbulent channel flow with forced oscillations covering a wide range of frequencies (ω+ = 0.03–0.0005) and amplitudes (10–70% of centreline velocity) are presented and discussed. Phase averages of the velocity <u> across the flow, and of the wall shear stress <τ>, as well as the turbulent fluctuations <u′u′> and <tt′> are obtained with LDA and hot-film techniques. The time-mean quantities, except u’2, are only slightly affected by the imposed oscillations whatever their frequency and amplitude. It is shown that the appropriate similarity parameter for the oscillating quantities ũ and ĩ is the non-dimensional Stokes length l+s (or the frequency ω+ = 2/l+2s). In the regime of high-frequency forcing (l+s < 10) the oscillating flow ũ and ĩ are governed by purely viscous shear forces although the time-mean flow is fully turbulent. This behaviour may be explained by the physical significance of l+s. At lower frequency l+s 10, the oscillating flow is influenced by the turbulence, in particular the amplitude of ĩ increases with respect to the Stokes amplitude and becomes proportional to l+s. The relative amplitude of <u′u′> and <tt′> decreases sharply with increasing forcing frequency once l+s < 25. This decay of the turbulence response is faster for the wall shear stress. For forcing frequencies such that l+s > 12, <u′u′> and <tt′> lag behind <u> and <τ> by respectively about 75 and 130 viscous time units. These lags decrease by a factor 2 at higher forcing frequencies. It is shown that in the log layer, the turbulence modulation diffuses away from the wall with a diffusivity equal to that of the time-mean turbulence. The imposed oscillations are felt down to the small scales of the turbulence as may be evidenced from the cyclic modulation of the Taylor microscale, the skewness and the flatness factors of δu′/δt. The modulations of the skewness and the flatness go through a maximum around l+s = 12.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. Kuo, A. Y. S. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution functions in fully turbulent flow.J. Fluid Mech. 50,285.

2. Rodi, W. 1980 Turbulence Models and their Application in Hydraulics — A State of the Art Review .Intl Association of Hydraulic Research Monograph,Delft.

3. Acharya, M. 1975 Measurements and predictions of a fully developed turbulent channel flow with imposed controlled oscillations.PhD Thesis,Stanford University, Dept. Mech. Engineering.

4. Tu, S. W. & Ramaprian, B. R. 1983 Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions.J. Fluid Mech. 137,31.

5. Blackwelder, R. F. & Haritonidis, J. H. 1983 Scaling of the bursting frequency in turbulent boundary layers.J. Fluid Mech. 132,87.

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3