Abstract
A layer of viscous liquid with a free surface is set in motion by the lower boundary moving simple-harmonically in its own plane. The stability of this motion is investigated. Since the primary flow is time-dependent, the time variable cannot be separated from at least one space variable, and a new approach must be used to investigate the problem. In this paper the stability of long waves is studied by a perturbation method which has not been applied before to problems of stability of unsteady flows, and it is found that the flow under consideration can be unstable for long waves.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献