Transverse waves in numerical simulations of cellular detonations

Author:

SHARPE GARY J.

Abstract

In this paper the structure of strong transverse waves in two-dimensional numerical simulations of cellular detonations is investigated. Resolution studies are performed and it is shown that much higher resolutions than those generally used are required to ensure that the flow and burning structures are well resolved. Resolutions of less than about 20 numerical points in the characteristic reaction length of the underlying steady detonation give very poor predictions of the shock configurations and burning, with the solution quickly worsening as the resolution drops. It is very difficult and dangerous to attempt to identify the physical structure, evolution and effect on the burning of the transverse waves using such under-resolved calculations. The process of transverse wave and triple point collision and reflection is then examined in a very high-resolution simulation. During the reflection, the slip line and interior triple point associated with the double Mach configuration of strong transverse waves become detached from the front and recede from it, producing a pocket of unburnt gas. The interaction of a forward facing jet of exploding gas with the emerging Mach stem produces a new double Mach configuration. The formation of this new Mach configuration is very similar to that of double Mach reflection of an inert shock wave reflecting from a wedge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3