Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations

Author:

MACHU GUNTHER,MEILE WALTER,NITSCHE LUDWIG C.,SCHAFLINGER UWE

Abstract

The motion and shape evolution of viscous drops made from a dilute suspension of tiny, spherical glass beads sedimenting in an otherwise quiescent liquid is investigated both experimentally and theoretically for conditions of low Reynolds number. In the (presumed) absence of any significant interfacial tension, the Bond number [Bscr ] = (Δρ)gR2/σ is effectively infinite. The key stages of deformation of single drops and pairs of interacting drops are identified. Of particular interest are (i) the coalescence of two trailing drops, (ii) the subsequent formation of a torus, and (iii) the breakup of the torus into two or more droplets in a repeating cascade. To overcome limitations of the boundary-integral method in tracking highly deformed interfaces and coalescing and dividing drops, we develop a formal analogy between drops of homogeneous liquid and a dilute, uniformly distributed swarm of sedimenting particles, for which only the 1/r far-field hydrodynamic interactions are important. Simple, robust numerical simulations using only swarms of Stokeslets reproduce the main phenomena observed in the classical experiments and in our flow-visualization studies. Detailed particle image velocimetry (PIV) for axisymmetric configurations enable a mechanistic analysis and confirm the theoretical results. We expose the crucial importance of the initial condition – why a single spherical drop does not deform substantially, but a pair of spherical drops, or a bell-shaped drop similar to what is actually formed in the laboratory, does undergo the torus/breakup transformation. The extreme sensitivity of the streamlines to the shape of the ring-like swarm explains why the ring that initially forms in the experiments does not behave like the slender open torus analysed asymptotically by Kojima, Hinch & Acrivos (1984). Essentially all of the phenomena described above can be explained within the realm of Stokes flow, without resort to interfacial tension or inertial effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3