Absorption of sound by homogeneous turbulence

Author:

Noir D. T.,George A. R.

Abstract

The following problem is treated: given a plane acoustic wave propagating through an unbounded field of turbulence, calculate the amount of acoustic energy converted into turbulent kinetic energy. The fluid velocities due to the acoustic waves and the turbulence are assumed to be small compared with the speed of sound. Thus the sound-turbulence interaction is weak and the turbulent field may be considered to be incompressible. The analysis is based on the interaction of two opposite effects: the acoustic distortion of the turbulence (producing anisotropic Reynolds stresses) and the redistribution of the kinetic energy among components (tendency towards isotropy) and among wavenumbers (energy cascade and dissipation). These phenomena are described using semi-empirical turbulence arguments. It is seen that the simplest model for the redistribution among components is not sufficient for unsteady flows. A more complete model is used which is modified to agree with the exact instantaneous distortion analysis of Ribner [map ] Tucker to first order. Owing to the two redistribution effects, the Reynolds stress behaves inelastically and is out of phase with the acoustic field. Thus there is an average production of turbulent energy corresponding to the absorption of acoustic energy and attenuation of the incident wave. For nearly isotropic turbulence, the attenuation coefficient is found to be proportional to the rate of viscous dissipation and independent of the frequency.In order to compare the theory with experiment several constants involved in the semi-empirical model of the turbulence must be found. Owing to the lack of better information these constants are estimated here by order-of-magnitude considerations. No existing experiments correspond to the homogeneous turbulence assumed by the theory. Comparison with the few reasonably applicable experiments shows qualitative agreement though the importance of the turbulent absorption is generally of nearly the same order as the measurement error. Several discrepancies between jet noise experiments and aerodynamic noise predictions may be roughly explained using the above analysis.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic modal damping due to localized loss behind a bluff-body;13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference);2007-05-21

2. Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering, Straining, and Mode-Coupling;SIAM Journal on Applied Mathematics;2001-01

3. Evolution of Hydromagnetic Disturbances in Low Ionized Cosmic Plasmas;Publications of the Astronomical Society of Japan;1999-06-01

4. Measurement of viscous sound absorption at 50–150 kHz in a model turbid environment;The Journal of the Acoustical Society of America;1998-10

5. Nonlinear sound–vortex interactions in an inviscid isentropic fluid: A two‐fluid model;Physics of Fluids;1995-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3