Simulation of flow between concentric rotating spheres. Part 1. Steady states

Author:

Marcus Philip S.,Tuckerman Laurette S.

Abstract

Axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed numerically as an initial-value problem. The time-independent spherical Couette flows with zero, one and two Taylor vortices computed in our simulations are found to be reflection-symmetric about the equator despite the fact that our pseudospectral numerical method did not impose these properties. Our solutions are examined for self-consistency, compared with other numerical calculations, and tested against laboratory experiments. At present, the most precise laboratory measurements are those that measure Taylor-vortex size as a function of Reynolds number, and our agreement with these results is within a few per cent. We analyse our flows by plotting their meridional circulations, azimuthal angular velocities, and energy spectra. At Reynolds numbers just less than the critical value for the onset of Taylor vortices, we find that pinches develop in the flow in which the meridional velocity redistributes the angular momentum. Taylor vortices are easily differentiated from pinches because the fluid in a Taylor vortex is isolated from the rest of the fluid by a streamline that extends from the inner to the outer sphere, whereas the fluid in a pinch mixes with the rest of the flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3