Nonlinear Kelvin–Helmholtz instability of a finite vortex layer

Author:

Pozrikidis C.,Higdon J. J. L.

Abstract

The nonlinear growth of periodic disturbances on a finite vortex layer is examined. Under the assumption of constant vorticity, the evolution of the layer may be analysed by following the contour of the vortex region. A numerical procedure is introduced which leads to higher-order accuracy than previous methods with negligible increase in computational effort. The response of the vortex layer is studied as a function of layer thickness and the amplitude and form of the initial disturbance. For small initial disturbances, all unstable layers form a large rotating vortex core of nearly elliptical shape. The growth rate of the disturbances is strongly affected by the layer thickness; however, the final amplitude of the disturbance is relatively insensitive to the thickness and reaches a maximum value of approximately 20% of the wavelength. In the fully developed layers, the amplitude shows a small oscillation owing to the rotation of the vortex core. For finite-amplitude initial disturbances, the evolution of the layer is a function of the initial amplitude. For thin layers with thickness less than 3% of the wavelength, three different patterns were observed in the vortex-core region: a compact elliptic core, an elongated S-shaped core and a bifurcation into two orbiting cores. For thicker layers, stationary elliptic cores may develop if the thickness exceeds 15% of the wavelength. The spacing and eccentricity of these cores is in good agreement with previously discovered steady-state solutions. The growth rate of interfacial area (or length of the vortex contour) is calculated and is found to approach a constant value in well-developed vortex layers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Aref, H. & Siggia E. D. 1980 Vortex dynamics of the two dimensional turbulent shear layer.J. Fluid Mech. 100,705–737.

2. Love A. E. H. 1894 On the stability of certain vortex motions.Proc. Lond. Math. Soc. Ser. 1 25,18–43.

3. Higdon, J. J. L. & Pozrikidis, C. 1985 The self-induced motion of vortex sheets.J. Fluid Mech. 150,203–231.

4. Overman, E. A. & Zabusky N. J. 1982 Evolution and merger of isolated vortex structures.Phys. Fluids 25,1297–1305.

5. Saffman, P. G. & Szeto R. 1981 Structure of a linear array of uniform vortices.Stud. Appl. Math. 65,223–248.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3