Electrical conductivity of low-pressure shock-ionized argon

Author:

Smy P. R.,Driver H. S.

Abstract

The electrical conductivity of shock-ionized argon produced in an electromagnetic shock tube of low attenuation has been measured at shock speeds of March 10–33, with initial pressures of 0·01–2·0 mm Hg. These measurements extend considerably the range of previous measurements performed with pressure-driven shock tubes. With the higher initial pressures or at the highest Mach numbers the measured conductivity is in good agreement with the previous measurements and with the Spitzer–Harm (1953) formula for the conductivity of a fully ionized gas. With the lower initial pressures (which have not previously been investigated) and at the lower March numbers the conductivity falls to less than half of the Spitzer-Harm value. Order-of-magnitude calculations show that diffusion of atoms, and heat conduction by the plasma atoms from the plasma to the shock-tube walls, can cause appreciable plasma cooling (and hence a reduction of the electrical conductivity) with the lowest initial pressures. This mechanism in conjunction with non-attainment of equilibrium ionization appears to explain the observed diminution in conductivity at the lowest pressures, but not the reduced conductivity at the medium pressures.Induced e.m.f. flow-velocity measurements indicate steady-flow conditions in the shock tube while photomultiplier measurements of the plasma radiation indicate that the column of shock-heated gas is 10–20 cm long; this latter figure is supported by the conductivity measurements. The fact that the length of the shock-heated gas column is not drastically shortened at low initial pressures in constrast to the work of Duff (1959), Roshko (1960) and Hooker (1961) is attributed to the fact that in this experiment both driver and driven gases are at high temperature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Smy, P. R. 1962 Nature, Lond.,193,969.

2. de Leeuw, J. H. 1958 Toronto University U.T.I.A. Rep. no. 49.

3. Petschek, H. E. & Byron, S. 1957 Ann. Phys. 1,270.

4. Hooker, W. J. 1961 Phys. Fluids,4,1451.

5. Schluter, A. 1950 Z. Naturforsch. 5a,72.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3