On generalized Bragg scattering of surface waves by bottom ripples

Author:

LIU YUMING,YUE DICK K. P.

Abstract

We study the generalized Bragg scattering of surface waves over a wavy bottom. We consider the problem in the general context of nonlinear wave–wave interactions, and write down and provide geometric constructions for the Bragg resonance conditions for second-order triad (class I) and third-order quartet (class II and class III) wave– bottom interactions. Class I resonance involving one bottom and two surface wave components is classical. Class II resonance manifests bottom nonlinearity (it involves two bottom and two surface wave components), and has been studied in the laboratory. Class III Bragg resonance is new and is a result of free-surface nonlinearity involving resonant interaction among one bottom and three surface wave components. The amplitude of the resonant wave is quadratic in the surface wave slope and linear in the bottom steepness, and, unlike the former two cases, the resonant wave may be either reflected or transmitted (relative to the incident waves) depending on the wave–bottom geometry. To predict the initial spatial/temporal growth of the Bragg resonant wave for these resonances, we also provide the regular perturbation solution up to third order. To confirm these predictions and to obtain an efficient computational tool for general wave–bottom problems with resonant interactions, we extend and develop a powerful high-order spectral method originally developed for nonlinear wave–wave and wave–body interactions. The efficacy of the method is illustrated in high-order Bragg resonance computations in two and three dimensions. These results compare well with existing experiments and perturbation theory for the known class I and class II Bragg resonance cases, and obtain and elucidate the new class III resonance. It is shown that under realistic conditions with moderate to small surface and bottom steepnesses, the amplitudes of third-order class II and class III Bragg resonant waves can be comparable in magnitude to those resulting from class I interactions and appreciable relative to the incident wave.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3