Dissipation-range geometry and scalar spectra in sheared stratified turbulence

Author:

SMYTH WILLIAM D.

Abstract

Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz instability in stratified shear flow are used to examine the geometry of the dissipation range in a variety of flow regimes. As the buoyancy and shear Reynolds numbers that quantify the degree of isotropy in the dissipation range increase, alignment statistics evolve from those characteristic of parallel shear flow to those found previously in studies of stationary, isotropic, homogeneous turbulence (e.g. Ashurst et al. 1987; She et al. 1991; Tsinober et al. 1992). The analysis yields a limiting value for the mean compression rate of scalar gradients that is expected to be characteristic of all turbulent flows at sufficiently high Reynolds number.My main focus is the value of the constant q that appears in both the Batchelor (1959) and Kraichnan (1968) theoretical forms for the passive scalar spectrum. Taking account of the effects of time-dependent strain, I propose a revised estimate of q, denoted qe, which appears to agree with spectral shapes derived from simulations and observations better than do previous theoretical estimates. The revised estimate is qe = 7.3±4, and is expected to be valid whenever the buoyancy Reynolds number exceeds O(102). The Kraichnan (1968) spectral form, in which effects of intermittency are accounted for, provides a better fit to the DNS results than does the Batchelor (1959) form.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3