Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response

Author:

Zaman K. B. M. Q.,Hussain A. K. M. F.

Abstract

Hot-wire and flow-visualization studies have been carried out in three air jets subjected to pure-tone acoustic excitation, and the instability, vortex roll-up and transition as well as jet response to the controlled excitation have been investigated. The centreline fluctuation intensity can be enhanced by inducing stable vortex pairing to a level much higher than even that at the ‘preferred mode’, but can also be suppressed below the unexcited level under certain conditions of excitation. The conditions most favourable to vortex pairing were determined as a function of the excitation Strouhal number, the Reynolds number (ReD), and the initial shear-layer state, i.e. laminar or turbulent. It is shown that the rolled-up vortex rings undergo pairing under two distinct conditions of excitation: ‘the shear layer mode’ when the Strouhal number based on the initial shear-layer momentum thickness (Stθ) is about 0·012, and ‘the jet column mode’ when the Strouhal number based on the jet diameter (StD) is about 0·85. The former involves pairing of the near-exit thin vortex rings when the initial boundary layer is laminar, irrespective of the value of StD. The latter involves pairing of the thick vortex rings at x/D ≅ 1·75, irrespective of Stθ or whether the initial boundary layer is laminar or turbulent. For laminar exit boundary layer, pairing is found to be stable, i.e., occurring regularly in space and time, for ReD < 5 × 104, but becomes intermittent with increasing ReD or fluctuation intensity in the initial boundary layer.The trajectories of the vortex centres and their convection velocities during a pairing event have been recorded through phase-locked measurements. In the presence of stable vortex pairing, the time average profiles of fluctuation intensities and Reynolds stress show noticeable deviations from those in the unexcited jet. The vortex pairing phenomenon produce considerably larger excursions of the $\widetilde{uv}(t)$ signal than the time-average Reynolds stress reveals, suggesting that only certain phases of the pairing process may be important in entrainment, and production of Reynolds stress and jet noise.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference46 articles.

1. Michalke, A. 1965b J. Fluid Mech. 22,351.

2. Miksad, R. W. 1972 J. Fluid Mech. 56,695.

3. Kelly, R. E. 1967 J. Fluid Mech. 27,657.

4. Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64,775.

5. Bradshaw, P. , Ferriss, D. H. & Johnson, R. F. 1964 J. Fluid Mech. 19,591.

Cited by 424 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3