Author:
Ruschak K. J.,Scriven L. E.
Abstract
Steady two-dimensional flow of Newtonian liquid in a layer around the inside of a rotating horizontal cylinder is analysed as a regular perturbation from rigid-body motion. The equations governing the first perturbation are solved in closed form. Parameter limits are taken in order to elucidate the flow structure and to provide simpler working formulae. The limiting cases are for small Reynolds numbers, which resembles viscous film flow down a curved wall; for large Reynolds numbers, which involves a periodic boundary layer; and for small ratios of average film thickness to cylinder radius. In every case the maximum film thickness occurs in the upper quadrant on the rising side of the cylinder and the minimum thickness is diametrically opposite.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献