On some consequences of the canonical transformation in the Hamiltonian theory of water waves

Author:

JANSSEN PETER A. E. M.

Abstract

We discuss some consequences of the canonical transformation in the Hamiltonian theory of water waves (Zakharov, J. Appl. Mech. Tech. Phys., vol. 9, 1968, pp. 190–194). Using Krasitskii's canonical transformation we derive general expressions for the second-order wavenumber and frequency spectrum and the skewness and the kurtosis of the sea surface. For deep-water waves, the second-order wavenumber spectrum and the skewness play an important role in understanding the so-called sea-state bias as seen by a radar altimeter. According to the present approach but in contrast with results obtained by Barrick & Weber (J. Phys. Oceanogr., vol. 7, 1977, pp. 11–21), in deep water second-order effects on the wavenumber spectrum are relatively small. However, in shallow water in which waves are more nonlinear, the second-order effects are relatively large and help to explain the formation of the observed second harmonics and infra-gravity waves in the coastal zone. The second-order effects on the directional-frequency spectrum are as a rule more important; in particular it is shown how the Stokes-frequency correction affects the shape of the frequency spectrum, and it is also discussed why in the context of the second-order theory the mean-square slope cannot be estimated from time series. The kurtosis of the wave field is a relevant parameter in the detection of extreme sea states. Here, it is argued that in contrast perhaps to one's intuition, the kurtosis decreases while the waves approach the coast. This is related to the generation of the wave-induced current and the associated change in mean sea level.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3