Spin-up from rest in a stratified fluid: boundary flows

Author:

FLÓR JAN BERT,UNGARISH MARIUS,BUSH JOHN W. M.

Abstract

We present the results of an integrated experimental, numerical and theoretical examination of spin-up from rest of a stratified fluid. A vertical cylindrical container of radius R and height 2H containing fluid of viscosity ν and characterized by a constant buoyancy frequency N is set impulsively to rotate about its symmetry axis with angular speed Ω = f/2. The characteristic Ekman number E = ν/ΩR2 is small and the Schmidt number S = ν/Ds (where Ds is the diffusivity of salt) is large. The investigation is focused on elucidating the initial stage of spin-up, which is characterized by an axisymmetric circulation driven by nonlinear Ekman layers adjoining the horizontal boundaries. Fluid is drawn by the boundary layers from the stationary, stratified interior and transported into corner regions. It is shown that the corner regions are restricted to a height of approximately 0.3Rf/N from the horizontal boundaries, above which the fluid remains unperturbed apart from that spun up by diffusion of momentum from the sidewall boundary. Two distinct regions thus emerge: rotating corner regions, and a quiescent stratified core. After a time 1.3/(E1/2N), the corner regions cover the bulk of the horizontal boundaries and the boundary layer suction is suppressed. Our study provides a framework for understanding the subsequent evolution of the spin-up process, which may be characterized by axisymmetry-breaking instabilities of the stratified core.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3