Added stresses because of the presence of FENE-P bead–spring chains in a random velocity field

Author:

MASSAH HESHMAT,HANRATTY THOMAS J.

Abstract

FENE-P bead–spring chains unravel in the presence of large enough velocity gradients. In a turbulent flow, this can result in intermittent added stresses and exchanges of energy between the chains and the fluid, whose magnitudes depend on the degree of unravelling and on the orientations of the bead–spring chains. These effects are studied by calculating the average behaviour at different times of an ensemble of chains, contained in a fluid particle that is moving around in a random velocity field obtained from direct numerical simulation of turbulent flow of a Newtonian fluid in a channel. The results are used to evaluate theoretical explanations of drag reduction observed in very dilute solutions of polymers.In regions of the flow in which the energy exchange with the fluid is positive, the possibility arises that turbulence can be produced by mechanisms other than the interaction of Reynolds stresses and the mean velocity gradient field. Of particular interest, from the viewpoint of understanding polymer drag reduction, is the finding that the exchange is negative in velocity fields representative of the wall vortices that are large producers of turbulence. One can, therefore, postulate that polymers cause drag reduction by selectively changing the structures of eddies that produce Reynolds stresses. The intermittent appearance of large added shear stresses is consistent with the experimental finding of a stress deficit, whereby the total local shear stress is greater than the sum of the Reynolds stress and the time-averaged shear stress calculated from the time-averaged velocity gradient and the viscosity of the solvent.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3