The thermal signature of a vortex pair impacting a free surface

Author:

SMITH GEOFFREY B.,VOLINO R. J.,HANDLER R. A.,LEIGHTON R. I.

Abstract

The action of a rising vortex pair on the thermal boundary layer at an air–water interface is studied both experimentally and numerically. The objective is to relate variations in the surface temperature field to the hydrodynamics of the vortex pair below. The existence of a thermal boundary layer on the water side of an air–water interface is well known; it is this boundary layer which is disrupted by the action of the vortex system. Experimentally, the vortices were generated via the motion of a pair of submerged flaps. The flow was quantified through simultaneous measurement of both the subsurface velocity field, via digital particle image velocimetry (DPIV), and the surface temperature field, via an infrared (IR) sensitive imager. The results of the physical experiments show a clearly defined disruption of the ambient thermal boundary layer which is well correlated with the vorticity field below. Numerical experiments were carried out in a parameter space similar to that of the physical experiments. Included in the numerical experiments was a simple surfactant model which enabled the exploration of the complex role surface elasticity played in the vortex–free surface interaction. The results of this combined experimental and numerical investigation suggest that surface straining rate is an important parameter in correlating the subsurface flow with the surface temperature field. A model based on surface straining rate is presented to explain the interaction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3