Author:
AGGARWAL NISHITH,SARKAR KAUSIK
Abstract
The deformation of a viscoelastic drop suspended in a Newtonian fluid subjected to a steady shear is investigated using a front-tracking finite-difference method. The viscoelasticity is modelled using the Oldroyd-B constitutive equation. The drop response with increasing relaxation time λ and varying polymeric to the total drop viscosity ratio β is studied and explained by examining the elastic and viscous stresses at the interface. Steady-state drop deformation was seen to decrease from its Newtonian value with increasing viscoelasticity. A slight non-monotonicity in steady-state deformation with increasing Deborah number is observed at high Capillary numbers. Transient drop deformation displays an overshoot before settling down to a lower value of deformation. The overshoot increases with increasing β. The drop shows slightly decreased alignment with the flow with increasing viscoelasticity. A simple ordinary differential equation model is developed to explain the various behaviours and the scalings observed numerically. The critical Capillary number for drop breakup is observed to increase with Deborah number owing to the inhibitive effects of viscoelasticity, the increase being linear for small Deborah number.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献