Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear

Author:

AGGARWAL NISHITH,SARKAR KAUSIK

Abstract

The deformation of a viscoelastic drop suspended in a Newtonian fluid subjected to a steady shear is investigated using a front-tracking finite-difference method. The viscoelasticity is modelled using the Oldroyd-B constitutive equation. The drop response with increasing relaxation time λ and varying polymeric to the total drop viscosity ratio β is studied and explained by examining the elastic and viscous stresses at the interface. Steady-state drop deformation was seen to decrease from its Newtonian value with increasing viscoelasticity. A slight non-monotonicity in steady-state deformation with increasing Deborah number is observed at high Capillary numbers. Transient drop deformation displays an overshoot before settling down to a lower value of deformation. The overshoot increases with increasing β. The drop shows slightly decreased alignment with the flow with increasing viscoelasticity. A simple ordinary differential equation model is developed to explain the various behaviours and the scalings observed numerically. The critical Capillary number for drop breakup is observed to increase with Deborah number owing to the inhibitive effects of viscoelasticity, the increase being linear for small Deborah number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3