The Penetration of Insect Egg-shells

Author:

Beament J. W. L.

Abstract

During development, membranes are added to the inner surface of the chorion in eggs ofRhodnius prolixus. The chemistry and permeability of the membranes have been investigated.A true fertilisation membrane is produced immediately before oviposition when the egg is fertilised. It is attached to the inner surface of the primary wax layer, recessed into the micropylar region and covers the whole inner surface of the shell.The membrane is very thin when first formed. It is colourless, comparatively resistant to solvents and apparently composed of “vulcanised” protein. It is semi-permeable to salt solutions but made very permeable to small molecules when immersed in absolute alcohols.In the following five days of incubation, further material is added to the fertilisation membrane. Over the main part of the shell and cap, this does not cause a great increase in the thickness of the, membrane. The added material is probably proteinaceous, with tanning- and vulcanising substances and it is mostly a product of the serosa.Opposite the inner openings of the micropyles, material is accumulated at a much greater rate and by six days incubation the membrane may be fifteen microns thick. The inner surface of the egg-shell thus becomes a uniformly ellipsoidal body. The thickened material has been called the epembryonic ring.At about the, sixth day of incubation, shortly before blastokinesis, the membrane is partially impregnated with a high-melting-point wax. This raises the “transition point” in the egg's water-loss/temperature curve from 42·5°C. to 68°C. Evidence is against this material being arranged as a second wax layer on the inner surface of the membrane.No further changes were detected until the thirteenth day when the innermost part of the membranes are broken down by the embryo. On the day before eclosion the embryo is surrounded by a liquid containing emulsified wax and proteinaceous material. The properties of the membranes return towards those of the one-day-old egg but do not attain them ; the egg hatches on the 16th day.The changes in the membranes produce considerable changes in the apparent toxicity of ovicidal liquids; ovicidal experiments are recorded and explained. In general, the egg becomes more resistant to lipophiles over the first six days and less resistant afterwards, due to the wax impregnation. The resistance to hydrophiles increases during development due to the epembryonic layer and secondary wax, but decreases when the membranes are broken down just before eclosion.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3