Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat cultivar

Author:

Cao H.-H.,Pan M.-Z.,Liu H.-R.,Wang S.-H.,Liu T.-X.

Abstract

AbstractContinuous ingestion of the phloem sap of plants by aphids can remove a significant amount of photoassimilates. Based on our earlier works, we hypothesized that due to the reduced aphid feeding time caused by antibiosis, wheat plants may achieve growth tolerance to aphids. We tested this hypothesis using three wheat cultivars, XY22 (Xiaoyan22), AK58 (Bainongaikang58) and XN979 (Xinong979) and the grain aphid, Sitobion avenae. In the choice test, S. avenae did not show any preference among the three wheat cultivars. However, S. avenae had a lower body weight and a lower intrinsic rate of increase when feeding on XY22 than on AK58 and XN979. The electrical penetration graph results indicated that S. avenae had significantly shorter mean and total phloem ingestion periods on XY22 than on AK58 or XN979. The aphids required a similar time to reach the phloem sap on the three wheat cultivars, but required more time to establish sustained phloem ingestion on XY22. These results suggest that the resistance factors of XY22 may be phloem based. Moreover, XY22 suffered less biomass loss in response to aphid infestation compared with XN979, suggesting that XY22 also had a better growth tolerance to S. avenae than XN979. Wheat resistance level to S. avenae was partially correlated with plant photosynthetic rates, and peroxidase activities. These results confirmed that the limitation in aphid feeding from plant phloem in wheat cultivar XY22 was related to antibiosis but not antixenosis, which caused XY22 tolerance to S. avenae.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3