Satellite Measurement of GHG Emissions: Prospects for Enhancing Transparency and Answerability under International Law

Author:

Aganaba-Jeanty Timiebi,Huggins Anna

Abstract

AbstractRecent technological advancements are facilitating the use of satellite remote-sensing techniques for the measurement of atmospheric concentrations of greenhouse gas emissions. This article evaluates the potential for these satellite-enabled measurements to contribute to transparency and answerability for state emissions, with a focus on international space law and policy, and the Paris Agreement to the United Nations Framework Convention on Climate Change. We show that in the context of the international space governance framework, the dissemination of integrated emissions data sets has the potential to enhance public answerability for the mitigation performance of states. Under the Paris Agreement, there is scope for space-based measurement techniques to provide an independent data source to support verification activities for national emissions inventories, and for aggregated data to be utilized as part of the global stocktake under Article 14. There are, however, a number of impediments to translating these transparency gains into enhanced answerability for states’ emissions reduction pledges.

Publisher

Cambridge University Press (CUP)

Subject

Law,Management, Monitoring, Policy and Law

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3