Knot Invariants in Vienna and Princeton during the 1920s: Epistemic Configurations of Mathematical Research

Author:

Epple Moritz

Abstract

In 1926 and 1927, James W. Alexander and Kurt Reidemeister claimed to have made “the same” crucial breakthrough in a branch of modern topology which soon thereafter was called knot theory. A detailed comparison of the techniques and objects studied in these two roughly simultaneous episodes of mathematical research shows, however, that the two mathematicians worked in quite different mathematical traditions and that they drew on related, but distinctly different epistemic resources. These traditions and resources were local, not universal elements of mathematical culture. Even certain common features of the main publications such as their modernist, formal style of exposition can be explained by reference to particular constellations in the intellectual and professional environments of Alexander and Reidemeister. In order to analyze the role of such elements and constellations of mathematical research practice, a historiographical perspective is developed which emphasizes parallels with the recent historiography of experiment. In particular, a notion characterizing those “working units of scientific knowledge production” which Hans-Jörg Rheinberger has termed “experimental systems” in the case of empirical sciences proves helpful in understanding research episodes such as those bringing about modern knot theory.

Publisher

Cambridge University Press (CUP)

Subject

History and Philosophy of Science,General Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3