A simple way to improve multivariate analyses of paleoecological data sets

Author:

Alroy John

Abstract

AbstractMultivariate methods such as cluster analysis and ordination are basic to paleoecology, but the messy nature of fossil occurrence data often makes it difficult to recover clear patterns. A recently described faunal similarity index based on the Forbes coefficient improves results when its complement is employed as a distance metric. This index involves adding terms to the Forbes equation and ignoring one of the counts it employs (that of species found in neither of the samples under consideration). Analyses of simulated data matrices demonstrate its advantages. These matrices include large and small samples from two partially overlapping species pools. In a cluster analysis, the widely used Dice coefficient and the Euclidean distance metric both create groupings that reflect sample size, the Simpson index suggests large differences that do not exist, and the corrected Forbes index creates groupings based strictly on true faunal overlap. In a principal coordinates analysis (PCoA) the Forbes index almost removes the sample-size signal but other approaches create a second axis strongly dominated by sample size. Meanwhile, species lists of late Pleistocene mammals from the United States capture biogeographic signals that standard ordination methods do recover, but the adjusted Forbes coefficient spaces the points out more sensibly. Finally, when biome-scale lists for living mammals are added to the data set and extinct species are removed, correspondence analysis misleadingly separates out the biome lists, and PCoA based on the Dice coefficient places them to the edge of the cloud of fossil assemblage data points. PCoA based on the Forbes index places them in more reasonable positions. Thus, only the adjusted Forbes index is able to recover true biological patterns. These results suggest that the index may be useful in analyzing not only paleontological data sets but any data set that includes species lists having highly variable lengths.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3