Abstract
1. The Gontcharoff interpolation serieswherehas been studied in various special cases. For example, if an = a0 (all n), (1.0) reduces to the Taylor expansion of F(z). If an = (−1)n, J. M. Whittaker showed that the series (1.0) converges to F(z) provided F(z) is an integral function whose maximum modulus satisfiesthe constant ¼π being the “best possible”. In the case |an| ≤ 1, I have shown that the series converges to F(z) provided F(z) is an integral function whose maximum modulus satisfiesand that while ·7259 is not the “best possible” constant here, it cannot be replaced by a number as great as ·7378.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bibliography;Introduction to the Theory of Entire Functions;1973
2. Bibliography;Pure and Applied Mathematics;1954