Author:
Gilmer Pat,Livingston Charles
Abstract
A concordance classification of links of , p < 1, is given in terms of an algebraically defined group, Φ±, which is closely related to Levine's algebraic knot concordance group. For p=1,Φ_ captures certain obstructions to two component links in S3 being concordant to boundary links, the generalized Sato-Levine invariants defined by Cochran. As a result, purely algebraic proofs of properties of these invariants are derived.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献