Abstract
Abstract
Let
$H^{\infty}(\Omega,X)$
be the space of bounded analytic functions
$f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$
from a proper simply connected domain Ω containing the unit disk
$\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$
into a complex Banach space X with
$\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$
. Let
$\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$
with
$\phi_{0}(r)\leq 1$
such that
$\sum_{n=0}^{\infty} \phi_{n}(r)$
converges locally uniformly with respect to
$r \in [0,1)$
. For
$1\leq p,q \lt \infty$
, we denote
\begin{equation*}
R_{p,q,\phi}(f,\Omega,X)= \sup \left\{r \geq 0: \left\lVert x_{0}\right\rVert^p \phi_{0}(r) + \left(\sum_{n=1}^{\infty} \left\lVert x_{n}\right\rVert\phi_{n}(r)\right)^q \leq \phi_{0}(r)\right\}
\end{equation*}
and define the Bohr radius associated with ϕ by
\begin{equation*}R_{p,q,\phi}(\Omega,X)=\inf \left\{R_{p,q,\phi}(f,\Omega,X): \left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1\right\}.\end{equation*}
In this article, we extensively study the Bohr radius
$R_{p,q,\phi}(\Omega,X)$
, when X is an arbitrary Banach space, and
$X=\mathcal{B}(\mathcal{H})$
is the algebra of all bounded linear operators on a complex Hilbert space
$\mathcal{H}$
. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.
Publisher
Cambridge University Press (CUP)
Reference35 articles.
1. On Generalized Schwarz‐Pick Estimates
2. The Bohr phenomenon for analytic functions on shifted disks
3. Remarks on the Bohr Phenomenon
4. (27) Kayumov, I. R. , Khammatova, D. M. , Ponnusamy, S. , The Bohr inequality for the generalized Cesáaro averaging operators, https://arxiv.org/abs/2104.01550.