SEPARATING MILLIKEN–TAYLOR SYSTEMS WITH NEGATIVE ENTRIES

Author:

Hindman Neil,Leader Imre,Strauss Dona

Abstract

AbstractGiven a finite sequence $\bm{a}=\langle a_i\rangle_{i=1}^n$ in $\mathbb{N}$ and a sequence $\langle x_t\rangle_{t=1}^\infty$ in $\mathbb{N}$, the Milliken–Taylor system generated by $\bm{a}$ and $\langle x_t\rangle_{t=1}^\infty$ is\begin{multline*} \qquad \mathrm{MT}(\bm{a},\langle x_t\rangle_{t=1}^\infty)=\biggl\{\sum_{i=1}^na_i\cdot\sum_{t\in F_i}x_t:F_1,F_2,\dots,F_n\text{ are finite non-empty} \\[-8pt] \text{subsets of $\mathbb{N}$ with }\max F_i\lt\min F_{i+1}\text{ for }i\ltn\biggr\}.\qquad \end{multline*}It is known that Milliken–Taylor systems are partition regular but not consistent. More precisely, if $\bm{a}$ and $\bm{b}$ are finite sequences in $\mathbb{N}$, then, except in trivial cases, there is a partition of $\mathbb{N}$ into two cells, neither of which contains $\mathrm{MT}(\bm{a},\langle x_t\rangle_{t=1}^\infty)\cup \mathrm{MT}(\bm{b},\langle y_t\rangle_{t=1}^\infty)$ for any sequences $\langle x_t\rangle_{t=1}^\infty$ and $\langle y_t\rangle_{t=1}^\infty$.Our aim in this paper is to extend the above result to allow negative entries in $\bm{a}$ and $\bm{b}$. We do so with a proof which is significantly shorter and simpler than the original proof which applied only to positive coefficients. We also derive some results concerning the existence of solutions of certain linear equations in $\beta\mathbb{Z}$. In particular, we show that the ability to guarantee the existence of $\mathrm{MT}(\bm{a},\langle x_t\rangle_{t=1}^\infty)\cup \mathrm{MT}(\bm{b},\langle y_t\rangle_{t=1}^\infty)$ in one cell of a partition is equivalent to the ability to find idempotents $p$ and $q$ in $\beta\mathbb{N}$ such that $a_1\cdot p+a_2\cdot p+\cdots+a_n\cdot p=b_1\cdot q+b_2\cdot q+\cdots+b_m\cdot q$, and thus determine exactly when the latter has a solution.AMS 2000 Mathematics subject classification: Primary 05D10. Secondary 22A15; 54H13

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3