Abstract
In (5) the author showed how to construct all inverse semigroups from their trace and semilattice of idempotents: the construction is by means of a family of mappings between ℛ-classes of the semigroup which we refer to as the structure mappings of the semigroup. In (7) (see also (8) and (9)) K. S. S. Nambooripad has adopted a similar approach to the structure of regular semigroups: he shows how to construct regular semigroups from their trace and biordered set of idempotents by means of a family of mappings between ℛ-classes and between ℒ-classes of the semigroup which we again refer to as the structure mappings of the semigroup. In the present paper we aim to provide a simpler set of axioms characterising the structure mappings on a regular semigroup than the axioms (R1)-(R7) of Nambooripad (9). Two major differences occur between Nambooripad's approach (9) and the approach adopted here: first, we consider the set of idempotents of our semigroups to be equipped with a partial regular band structure (in the sense of Clifford (3)) rather than a biorder structure, and second, we shall enlarge the set of structure mappings used by Nambooripad.
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. On semigroups and uniform partial bands
2. The partial groupoid of idempotents of a regular semigroup;Clifford;Math. Dept. Tulane Univ.,1975
3. The fundamental representation of a regular semigroup;Clifford;Math. Dept. Tulane Univ.,1975
4. Structure of regular semigroups, I fundamental regular semigroups
5. On the structure of inverse semigroups
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献