Abstract
AbstractWe consider two inclusions of $C^{*}$-algebras whose small $C^{*}$-algebras have approximate units of the large $C^{*}$-algebras and their two spaces of all bounded bimodule linear maps. We suppose that the two inclusions of $C^{*}$-algebras are strongly Morita equivalent. In this paper, we shall show that there exists an isometric isomorphism from one of the spaces of all bounded bimodule linear maps to the other space and we shall study the basic properties about the isometric isomorphism. And, using this isometric isomorphism, we define the Picard group for a bimodule linear map and discuss the Picard group for a bimodule linear map.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献