Author:
Longa Eduardo Rosinato,Ripoll Jaime Bruck
Abstract
AbstractWe prove a topological rigidity theorem for closed hypersurfaces of the Euclidean sphere and of an elliptic space form. It asserts that, under a lower bound hypothesis on the absolute value of the principal curvatures, the hypersurface is diffeomorphic to a sphere or to a quotient of a sphere by a group action. We also prove another topological rigidity result for hypersurfaces of the sphere that involves the spherical image of its usual Gauss map.
Publisher
Cambridge University Press (CUP)