Free rank of symmetry of products of Dold manifolds

Author:

Dey Pinka

Abstract

AbstractDold manifolds $P(m,n)$ are certain twisted complex projective space bundles over real projective spaces and serve as generators for the unoriented cobordism algebra of smooth manifolds. The paper investigates the structure of finite groups that act freely on products of Dold manifolds. It is proved that if a finite group G acts freely and $ \mathbb{Z}_2 $ cohomologically trivially on a finite CW-complex homotopy equivalent to ${\prod_{i=1}^{k} P(2m_i,n_i)}$, then $G\cong (\mathbb{Z}_2)^l$ for some $l\leq k$ (see Theorem A for the exact bound). We also determine some bounds in the case when for each i, ni is even and mi is arbitrary. As a consequence, the free rank of symmetry of these manifolds is determined for cohomologically trivial actions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference33 articles.

1. KU-groups of Dold manifolds;Fujii;Osaka J. Math.,1966

2. (26) Paiva, T. F. V. and dos Santos, E. L. . Cohomology algebra of orbit spaces of free involutions on some Wall manifolds (2021), available at https://arxiv.org/abs/2010.10599.pdf.

3. Determination of the Cobordism Ring

4. THE COHOMOLOGY RING OF ORBIT SPACES OF FREE -ACTIONS ON SOME DOLD MANIFOLDS

5. On the rank of abelian groups acting freely on(S n ) k

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3