Abstract
AbstractIt is shown that any torsion unit of the integral group ring $\mathbb{Z}G$ of a finite group $G$ is rationally conjugate to an element of $\pm G$ if $G=XA$ with $A$ a cyclic normal subgroup of $G$ and $X$ an abelian group (thus confirming a conjecture of Zassenhaus for this particular class of groups, which comprises the class of metacyclic groups).
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献