Abstract
Let Γ be an irreducible and non-singular curve in [n] (n ≧ 3) which is the complete intersection of n − 1 primals of order m (m ≧ 2) with a common “self-polar” simplex S: by this I mean that the rth polar of each vertex of S with respect to any one of the defining primals is the opposite face of S counted m−r times, for r = 1, 2, …, m − 1. The various such Γ constitute the curves of the title; they were encountered in (2). When m = 2, Γ is the intersection of n − 1 quadrics with a common self-polar simplex in the familiar classical sense.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献