On supports of semigroups of measures

Author:

Chow H. L.

Abstract

Let S denote a compact semitopological semigroup (i.e. the multiplication is separately continuous) and P(S) the set of probability measures on S. Then P(S) is a compact semitopological semigroup under convolution and the weak * topology (4). Let Γ be a subsemigroup of P(S) and where supp μ is the support of μ ∈P(S). In the case in which S is commutative it was shown by Glicksberg in (4) that S(Γ) is an algebraic group in S if Γ is an algebraic group. For a general semigroup S, Pym (7) considered Γ = {η}, η being an idempotent, and established that S(Γ) is a topologically simple subsemigroup of S, i.e. every ideal of S(Γ) is dense in S(Γ). In this note we prove that if Γ is a simple subsemigroup of P(S) (a semigroup is simple if it contains no proper ideal) which contains an idempotent then S(Γ) is a topologically simple subsemigroup of S. We also give an example to show that our conclusion (hence also Pym's) is best possible in the sense that S(Γ) is not simple in general

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group ideals in a semigroup of measures;Semigroup Forum;1981-12

2. In a Compact Semigroup, Are Topologically Simple Subsemigroups Also Simple?;The American Mathematical Monthly;1975-02

3. In a Compact Semigroup, are Topologically Simple Subsemigroups also Simple?;The American Mathematical Monthly;1975-02

4. Nilpotent measures on compact semigroups;Bulletin of the Australian Mathematical Society;1975-02

5. QUASI-NILPOTENT SETS IN SEMIGROUPS;P AM MATH SOC;1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3