KSBA compactification of the moduli space of K3 surfaces with a purely non-symplectic automorphism of order four

Author:

Moon Han-Bom,Schaffler Luca

Abstract

We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with a purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus 2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb {P}^{1}\times \mathbb {P}^{1}$ branched along a specific $(4,\,4)$ curve. We show that, up to a finite group action, this stable pairs compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb {P}^{1})^{8}{/\!/}\mathrm {SL}_2$ with the symmetric linearization.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference37 articles.

1. Threefolds and deformations of surface singularities

2. Non-normal abelian covers

3. 28. Lazarsfeld, R. , Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Volume 48 (Springer-Verlag, Berlin, 2004).

4. 2. Alexeev, V. , Moduli of weighted hyperplane arrangements (eds. G. Bini, M. Lahoz, E. Macrì, and P. Stellari), Advanced Courses in Mathematics (CRM Barcelona, Birkhäuser/Springer, Basel, 2015).

5. 37. Zhang, D.-Q. , Automorphisms of K3 surfaces, Proceedings of the International Conference on Complex Geometry and Related Fields, pp. 379–392, AMS/IP Stud. Adv. Math., Volume 39 (American Mathematical Society, Providence, RI, 2007).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compact moduli of K3 surfaces with a nonsymplectic automorphism;Transactions of the American Mathematical Society, Series B;2024-01-22

2. Unimodal singularities and boundary divisors in the KSBA moduli of a class of Horikawa surfaces;Mathematische Nachrichten;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3