Abstract
AbstractWe show that for a non-flat bornological space there is always a bornological countable enlargement; moreover, when the space is non-flat and ultrabornological the countable enlargement may be chosen to be both bornological and barrelled. It is also shown that countable enlargements for barrelled or bornological spaces are always Mackey topologies, and every quasibarrelled space that is not barrelled has a quasibarrelled countable enlargement.AMS 2000 Mathematics subject classification: Primary 46A08; 46A20
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Distinguished $$C_{p}\left( X\right) $$ spaces and the strongest locally convex topology;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-09-07
2. Mackey hyperplanes/enlargements for Tweddle’s space;Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas;2013-12-18
3. Tightness and distinguished Fréchet spaces;Journal of Mathematical Analysis and Applications;2006-12
4. Weak barrelledness for C(X) spaces;Journal of Mathematical Analysis and Applications;2004-09