Abstract
AbstractIn this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via fractional Riemann–Liouville derivatives. A Fischer decomposition, Almansi decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed. Moreover, we establish the fractional Cauchy–Kovalevskaya extension (FCK extension) theorem for fractional monogenic functions defined on ℝd. Based on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous polynomials, are introduced. We study the connection between the FCK extension of functions of the form xPl and the classical Gegenbauer polynomials. Finally, we present an example of an FCK extension.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献