Factorizations in Bounded Hereditary Noetherian Prime Rings

Author:

Smertnig Daniel

Abstract

AbstractIf H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by (a), and ℒ(H) = {(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference36 articles.

1. Direct-sum decompositions of modules with semilocal endomorphism rings

2. QUANTUM UNIQUE FACTORISATION DOMAINS

3. Factorization Theory and Decompositions of Modules

4. Simplification pour les ordres des corps de quaternions totalement définis;Vignéras;J. Reine Angew. Math.,1976

5. Hereditary arithmetics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On transfer Krull monoids;Semigroup Forum;2022-06-14

2. Finiteness of elasticities of orders in central simple algebras;Acta Arithmetica;2022

3. The Characterization of Finite Elasticities;Lecture Notes in Mathematics;2022

4. Preliminaries and General Notation;The Characterization of Finite Elasticities;2022

5. Introduction;The Characterization of Finite Elasticities;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3