On the Square Subgroup of a Mixed SI-Group

Author:

Andruszkiewicz R. R.,Woronowicz M.

Abstract

AbstractThe relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New results for the additive groups of Hamiltonian rings;Communications in Algebra;2023-12-12

2. The Classification of Torsion-free TI-Groups;Algebra Colloquium;2022-12

3. A simple solution of Stratton and Webb’s problem;Communications in Algebra;2022-01-20

4. On the Nil R-mod Abelian Groups;Vietnam Journal of Mathematics;2019-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3