A stochastic proof of an extension of a theorem of Rado

Author:

Øksendal Bernt

Abstract

The purpose of this article is to illustrate how the theorem of Lévy about conformal invariance of Brownian motion can be used to obtain information about boundary behaviour and removable singularity sets of analytic functions. In particular, we prove a Frostman–Nevanlinna–Tsuji type result about the size of the set of asymptotic values of an analytic function at a subset of the boundary of its domain of definition (Theorem 1). Then this is used to prove the following extension of the classical Radó theorem: If φ is analytic in B\K, where B is the unit ball of ℂ;n and K is a relatively closed subset of B, and the cluster set of φ at K has zero harmonic measure w.r.t. φ(B\K)\≠Ø, then φ extends to a meromorphic function in B (Theorem 2).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. A generalization of a theorem of Rad�

2. On a problem of E. L. Stout

3. Ensembles singuliers impropres des fonctions plurisousharmoniques;Lelong;J. Math. Pures Appl.,1957

4. Theorems of Riesz type on the boundary behaviour of harmonic maps;Ikegami;Osaka J. Math.,1973

5. Jensen measures and a theorem of Radó

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beurling's projection theorem via one-dimensional Brownian motion;Mathematical Proceedings of the Cambridge Philosophical Society;1996-05

2. Complex valued multiparameter stochastic integrals;Journal of Theoretical Probability;1995-07

3. Dirichlet forms, quasiregular functions and Brownian motion;Inventiones Mathematicae;1988-06

4. Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis;Annales Academiae Scientiarum Fennicae Series A I Mathematica;1986

5. Stochastic Processes, Infinitesimal Generators and Function Theory;Operators and Function Theory;1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3