Author:
Cutland N. J.,Zimmer G. B.
Abstract
AbstractLet $X$, $Y$ be compact Hausdorff spaces and let $T:C(X,\mathbb{R})\to C(Y,\mathbb{R})$ be an invertible linear operator. Non-standard analysis is used to give a new intuitive proof of the Amir–Cambern result that if $\|T\|\hskip1pt\|T^{-1}\|\lt2$, then there is a homeomorphism $\psi:Y\to X$. The approach provides a proof of the following representation theorem for such near-isometries:$$ Tf=(T1_X)(f\circ\psi)+Sf, $$with $\|S\|\leq2(\|T\|-(1/\|T^{-1}\|))$, so $\|S\|\lt\|T\|$. If $\|T\|\hskip1pt\|T^{-1}\|=1$, then $S=0$, giving the well-known representation for isometries.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献