Abstract
AbstractA thin Lie algebra is a Lie algebra $L$, graded over the positive integers, with its first homogeneous component $L_1$ of dimension two and generating $L$, and such that each non-zero ideal of $L$ lies between consecutive terms of its lower central series. All homogeneous components of a thin Lie algebra have dimension one or two, and the two-dimensional components are called diamonds. Suppose the second diamond of $L$ (that is, the next diamond past $L_1$) occurs in degree $k$. We prove that if $k>5$, then $[Lyy]=0$ for some non-zero element $y$ of $L_1$. In characteristic different from two this means $y$ is a sandwich element of $L$. We discuss the relevance of this fact in connection with an important theorem of Premet on sandwich elements in modular Lie algebras.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献