Abstract
AbstractA disease transmission model of SEIR type with exponential demographic structure is formulated, with a natural death rate constant and an excess death rate constant for infective individuals. The latent period is assumed to be constant, and the force of the infection is assumed to be of the standard form, namely, proportional to I(t)/N(t) where N(t) is the total (variable) population size and I(t) is the size of the infective population. The infected individuals are assumed not to be able to give birth and when an individual is removed fromthe I-class, it recovers, acquiring permanent immunity with probability f (0 ≤ f ≤ 1) and dies from the disease with probability 1 − f. The global attractiveness of the disease-free equilibrium, existence of the endemic equilibrium as well as the permanence criteria are investigated. Further, it is shown that for the special case of the model with zero latent period, R0 > 1 leads to the global stability of the endemic equilibrium, which completely answers the conjecture proposed by Diekmann and Heesterbeek.
Publisher
Cambridge University Press (CUP)
Subject
Mathematics (miscellaneous)
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献